
Simulink® Parameter
Estimation

For Use with Simulink®

Modeling

Simulation

Implementation

User’s Guide
Version 1

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simulink® Parameter Estimation User’s Guide

© COPYRIGHT 2004–2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
June 2004 First printing New for Version 1.0 (Release 14)
October 2004 Online only Revised for Version 1.1 (Release 14SP)
March 2005 Online only Revised for Version 1.1.1 (Release 14SP2)
September 2005 Online only Revised for Version 1.1.2 (Release 14SP3)
March 2006 Second printing Revised for Version 1.1.3 (Release 2006a)
September 2006 Online only Revised for Version 1.1.4 (Release 2006b)

Contents

Getting Started

1
What Is Simulink Parameter Estimation? 1-3

What You Need to Get Started . 1-4
Prerequisite Software and Optional Software 1-4
Required Knowledge . 1-4
Demos . 1-4

How Simulink Parameter Estimation Works 1-5
Basic Steps in the Estimation Process 1-5
Structure of an Estimation Project 1-5

Setting Up the Estimation Data . 1-7
Importing Transient Data . 1-8
Specifying Initial Conditions . 1-11
Selecting Parameters for Estimation 1-12
Selecting States for Estimation . 1-14
Initial Guesses and Upper/Lower Bounds 1-15

Setting Up an Estimation Project 1-18
Adding Data Sets . 1-18
Specifying and Setting Up Parameters 1-20
Opening the Estimation Pane . 1-21

Selecting Views for Plotting . 1-23

Running the Estimation . 1-26

Model Validation . 1-29
Example: Validating the Engine Idle Speed Model 1-29
Loading and Importing the Validation Data 1-30
Performing Validation . 1-32
Residuals . 1-36

v

Setting Options for Optimization . 1-39
Selecting Optimization Methods . 1-40
Selecting Optimization Termination Options 1-40
Selecting Additional Optimization Options 1-41
Specifying the Cost Function . 1-42

Setting Options for the Simulation 1-43
Selecting Simulation Time . 1-43
Selecting Solvers . 1-44

Estimating Independent Parameters 1-47
Example: Estimating Independent Paramters 1-47

Estimating Initial Conditions

2
Why Estimate Initial Conditions? 2-2

Estimating Initial Conditions for Blocks with External
Initial Conditions . 2-3

Example: Mass-Spring-Damper System 2-4
Model Parameters . 2-5
Setting Up the Estimation Project . 2-6
Importing Transient Data and Selecting Parameters for

Estimation . 2-6
Selecting Parameters and Initial Conditions for

Estimation . 2-8
Creating the Estimation Task . 2-9
Running the Estimation and Viewing Results 2-10

Preprocessing Data

3
Why Preprocess Data? . 3-2

vi Contents

Data Preprocessing Tool . 3-3

Excluding Data . 3-5
Selecting Data for Exclusion from the Data Editing

Table . 3-5
Selecting Data for Exclusion from a Plot of the Data 3-8
Selecting Data for Exclusion by a Rule 3-11

Detrending and Filtering . 3-14
Detrending . 3-14
Filtering . 3-14

Miscellaneous Data Handling . 3-16
Handling Missing Data . 3-16
Loading Data and Saving Modified Data Sets 3-16

Managing Multiple Projects

4
Multiple Projects and Tasks . 4-2

Saving Control and Estimation Tools Manager
Projects . 4-3

Opening Control and Estimation Tools Manager
Projects . 4-4

Adaptive Lookup Tables

5
What Are Lookup Tables? . 5-2

How Adaptive Lookup Tables Work 5-3

vii

Implementation of Adaptive Lookup Tables 5-4
Adaptive Lookup Table Library . 5-4
Using Adaptive Lookup Tables in Simulink Models 5-5
Real-Time Lookup Tables . 5-6
Setting Adaptive Lookup Table Parameters 5-7

Example: n-D Adaptive Lookup Table 5-8
Running the Example . 5-9

Estimating from the Command Line

6
Introduction . 6-3

Example: Estimating Parameters and Initial Conditions
of the F14 Model . 6-5
Baseline Simulation . 6-6
Creating a Transient Experiment Object 6-7
Assigning Experimental Data to Inputs and Outputs of the

Model . 6-8
Creating Parameter Objects for Estimation 6-9
Creating an Estimation Object and Running the

Estimation . 6-10

Creating and Customizing Estimation Projects 6-14

Creating Transient Data Objects . 6-15
Properties of Transient Data Objects 6-15
Modifying Properties of Transient Data Objects 6-18
Using Class Methods . 6-19

Creating State Data Objects . 6-20
Properties of the State Data Object 6-20
Example: Initial Condition Data . 6-22
Modifying Properties . 6-22
Using Class Methods . 6-22

Creating Transient Experiment Objects 6-23

viii Contents

Properties of Transient Experiment Objects 6-23
Example: Creating an F14 Experiment 6-24
Example: Creating a Van der Pol Experiment from User

Objects . 6-24
Modifying Properties . 6-25
Using Class Methods . 6-25

Creating Parameter Objects . 6-26
Constructor . 6-26
Properties of Parameter Objects . 6-26
Example: F14 Model . 6-28
Example: Gain Matrix . 6-28
Modifying Properties . 6-28
Using Class Methods . 6-29

Creating State Objects . 6-30
Constructor . 6-30
Properties of State Objects . 6-30
Example: F14 Model . 6-32
Modifying Properties . 6-32
Using Class Methods . 6-33

Creating Estimation Objects . 6-34
Constructor . 6-34
Properties of Estimation Objects . 6-34
Example: F14 Model . 6-35
Modifying Properties . 6-36
Using Class Methods . 6-36

ix

Blocks — Alphabetical List

7

Functions — Alphabetical List

8

Index

x Contents

1

Getting Started

What Is Simulink Parameter
Estimation? (p. 1-3)

A brief description of the product

What You Need to Get Started
(p. 1-4)

Requirements and options for getting
started with Simulink Parameter
Estimation

How Simulink Parameter
Estimation Works (p. 1-5)

How Simulink Parameter
Estimation handles the estimation
problem

Setting Up the Estimation Data
(p. 1-7)

How to set up basic estimation
information, including importing
empirical data, choosing parameters
for estimation, and so on

Setting Up an Estimation Project
(p. 1-18)

Steps involved in creating the
estimation project, which includes
the data and the tasks you want to
perform on the data

Selecting Views for Plotting (p. 1-23) Plotting estimation project data

Running the Estimation (p. 1-26) How to run the estimation and see
the resulting data

Model Validation (p. 1-29) How to compare your model’s output
with validation data

Setting Options for Optimization
(p. 1-39)

Fine tuning the optimization process
for your estimation

1 Getting Started

Setting Options for the Simulation
(p. 1-43)

How to select simulation time and
solvers for your Simulink model to
use while estimation occurs

Estimating Independent Parameters
(p. 1-47)

How to estimate parameters that are
not explicitly defined in your model

1-2

What Is Simulink Parameter Estimation?

What Is Simulink Parameter Estimation?
Simulink® Parameter Estimation is a Simulink-based product for estimating
and calibrating model parameters from experimental data. This product
supports

• Transient Estimation — Estimate parameters by comparing model output
to the experimental data for a given input.

• Initial Condition Estimation — Estimate the initial conditions of states
using experimental data.

• Adaptive Lookup Tables — Estimate the table values at the prescribed
breakpoints by using measurements from the physical system.

Simulink Parameter Estimation provides the tools used to

1 Set up the problem.

2 Specify which model parameters to estimate.

3 Import and prepare the experimental data for parameter estimation (or
preprocess).

4 View the estimation progress.

5 Validate the estimation results based on plots of measured versus.
simulated data and residuals.

1-3

1 Getting Started

What You Need to Get Started

Prerequisite Software and Optional Software
Simulink Parameter Estimation requires MATLAB®, Simulink, and the
Optimization Toolbox.

The MathWorks provides several products that are relevant to the kinds
of task you can perform with Simulink Parameter Estimation. For more
information about any of these products, see the

• MathWorks Web site at
http://www.mathworks.com/products/simparameter/related.jsp

• Online documentation for related products, if they are installed on your
system

Required Knowledge
It is not necessary that you have a strong background in optimization theory
or practice. As you gain familiarity with Simulink Parameter Estimation, you
might find it helpful to consult the Optimization Toolbox documentation for
more details about optimization algorithms.

Demos
Simulink Parameter Estimation provides demonstration files that show you
how to use the blockset to perform control design tasks in various settings. To
run these demos, type

demo

at the MATLAB prompt. This opens the Demos pane in the Help browser.
Select Simulink > Simulink Parameter Estimation to list the available
demos. Alternatively, if you have the Help browser open, you can select the
Demos pane in the Help browser and then select Simulink > Simulink
Parameter Estimation.

1-4

http://www.mathworks.com/products/simparameter/related.jsp

How Simulink Parameter Estimation Works

How Simulink Parameter Estimation Works
Simulink Parameter Estimation compares empirical data with data generated
by a Simulink model. Using optimization techniques, Simulink Parameter
Estimation estimates the parameter and (optionally) initial conditions of
states such that a user-selected cost function is minimized. The cost function
typically calculates a least-square error between the empirical and model
data signals.

Basic Steps in the Estimation Process
After you built a Simulink model, follow these steps to configure and run a
parameter estimation:

1 Select Tools > Parameter Estimation in your Simulink model.

This opens the Control and Estimation Tools Manager, creates a new
project, and adds an Estimation node to the workspace directory tree.

2 Import the input and output data set from your Simulink model.

3 Select the parameters and initial conditions you want to estimate.

4 Configure the estimation itself, including cost functions and data views.

5 Run the estimation.

6 Check the results by examining either the cost-function values, plots, or
parameter values.

Structure of an Estimation Project
The Control and Estimation Tools Manager, which is a graphical user
interface (GUI) for performing parameter estimation, stores and organizes
all data from a given Simulink model inside a project. See Control and
Estimation Tools Manager GUI on page 1-8 for a picture showing this GUI.

Each estimation task can include

• One or more data sets

• Parameter information

1-5

1 Getting Started

• One or more sets of estimation settings, or configurations

The default project name is the same as the Simulink model name. The
project name is shown in the workspace directory tree of the Control and
Estimation Tools Manager.

You can also add tasks from Simulink Control Design and Model Predictive
Control Toolbox to the current project, if these products are installed on your
system.

1-6

Setting Up the Estimation Data

Setting Up the Estimation Data
Before beginning the estimation process, you must set up the problem by
configuring the appropriate parameters, solvers, and cost functions. Simulink
Parameter Estimation provides a graphical user interface (GUI) that makes
this setup process quick and easy. This section describes how to use this GUI
to do a complete setup.

To perform the setup:

1 Open the nonlinear idle-speed model of an automotive engine by typing at
the MATLAB prompt

engine_idle_speed

The model appears as shown below.

2 Open the Control and Estimation Tools Manager GUI by selecting Tools >
Parameter Estimation in the Simulink model window.

The workspace directory tree displays the project name. Estimation tasks
are organized inside the Estimation Task node.

1-7

1 Getting Started

Control and Estimation Tools Manager GUI

To add, delete, or rename the project or task:

1 Right-click the project or task node in the workspace directory tree.

2 Select the appropriate command from the shortcut menu.

When using the Control and Estimation Tools Manager for parameter
estimation, you can

• Manage estimation projects.

• Select parameters and initial conditions to configure the estimation.

• Specify cost functions.

• Import experimental data (to be matched by the output of your Simulink
model).

• Specify the initial conditions of your model.

Importing Transient Data
To import transient (measured) data for your dynamic system:

1-8

Setting Up the Estimation Data

1 In the Control and Estimation Tools Manager, select Estimation Task >
Transient Data in the workspace directory tree.

2 Right-click Transient Data and select New to create a new data set. The
idle-speed model of an automotive engine contains measured data stored
in the iodata array.

3 Select the New Data node in the workspace directory tree.

Import Data into the Control and Estimation Tools Manager

To import the model input data:

1 Click the Input Data tab.

2 Right-click the first Data cell and select Import to open the Data Import
dialog box.

1-9

1 Getting Started

3 Select iodata from the list of variables. The iodata array contains two
columns: the first for model input data, and the second for model output
data.

4 Enter 1 in the Assign columns field, and then click Import.

Note To import the time vector, select the Time/Ts cell in the Input Data
tab and follow the same procedure — but select the time variable in the
Data Import dialog box instead.

To import the model output data:

1 Click the Output Data tab.

2 Right-click the first Data cell and select Import to open the Data Import
dialog box.

3 Select iodata from the list of variables.

4 Enter 2 in the Assign columns field to use the second column of iodata,
and then click Import.

1-10

Setting Up the Estimation Data

Note To import the time vector for output data, select the Time/Ts cell in
the Output Data tab and follow the same procedure — but select the time
variable in the Data Import dialog box instead. Enter 1 in the Assign
columns field.

5 Click Close to close the Data Import dialog box.

Specifying Initial Conditions
By default, the estimation uses initial conditions specified in the Simulink
model. If you want to specify initial conditions other than the defaults, use
the State Data pane. You can open it by selecting Transient Data > New
Data in the workspace directory tree, and then clicking the State Data tab.

1-11

1 Getting Started

To specify an initial condition for a state:

1 Select the Data cell associated with the state.

2 Enter the initial conditions. In this example, enter -0.2 for State - 1 of
the engine_idle_speed/Transfer Fcn. For State - 2, enter 0.

Selecting Parameters for Estimation
To select parameters for estimation:

1 In the Control and Estimation Tools Manager, select the Variables node in
the workspace directory tree to open the Estimated Parameters pane.

2 In the Estimated Parameters pane, click Add to open the Select
Parameters dialog box.

1-12

Setting Up the Estimation Data

3 Select the last seven parameters: freq1, freq2, freq3, gain1, gain2,
gain3, and mean_speed, and then click OK.

In general, you can enter parameters stored in one of the following by entering
information into the Specify expression field (separated by commas):

• Simulink parameter object

Example: For a Simulink parameter object k, type k.value.

• Structure

Example: For a structure S, type S.fieldname (where fieldname represents
the name of the field that contains the parameter).

• Cell array

Example: Type C{1} to select the first element of the C cell array.

• MATLAB array

Example: Type a(1:2) to select the first column of a 2-by-2 array called a.

1-13

1 Getting Started

Note You need not estimate the parameters selected here all at once. You
can first select all the parameters that you are interested in, and then later
decide which ones to estimate in a particular estimation.

Often, it is more practical to estimate a small group of parameters and use the
final estimated values as a starting point for further estimation of parameters
that are trickier. Making these sorts of choices involves experience, intuition,
and a solid understanding of the strengths and limitations of your Simulink
model.

Sometimes models have parameters that are not explicitly defined in the
model itself. For example, a gain k could be defined in the MATLAB
workspace as k=a+b, where a and b are not defined in the model but k is used.
To add these independent parameters to the Select Parameters dialog box, see
“Estimating Independent Parameters” on page 1-47.

Selecting States for Estimation
To estimate initial conditions (or initial states) if they are not known:

1 In the Control and Estimation Tools Manager, select the Variables node in
the workspace directory tree.

2 Click the Estimated States tab.

3 Click Add. This opens the Select States dialog box.

1-14

Setting Up the Estimation Data

4 Examine the available states but do not select any for this example.

In general, you only choose to estimate those states that are not already in
the model.

Initial Guesses and Upper/Lower Bounds
After you select parameters for estimation, the Control and Estimation Tools
Manager looks like the following figure.

1-15

1 Getting Started

For each parameter, use the Default settings pane to specify the following:

• Initial guess — The value the estimation uses to start the process.

• Minimum — The smallest allowable parameter value. The default is -Inf.

• Maximum — The largest allowable parameter value. The default is +Inf.

• Typical value — The average order of magnitude. If you expect your
parameter to vary over several orders of magnitude, enter the number
that specified the average order of magnitude you expect. For example, if
your initial guess is 10, but you expect the parameter to vary between
10 and 1000, enter 100 (the average of the order of magnitudes) for the
typical value.

1-16

Setting Up the Estimation Data

You use the typical value in two ways:

• To scale parameters with radically different orders of magnitude for equal
emphasis during the estimation. For example, try to select the typical
values so that

anticipated value
typical value

≅ 1

or

initial value
typical value

≅ 1

• To put more of less emphasis on specific parameters. Use a larger typical
value to put more emphasis on a parameter during estimation.

1-17

1 Getting Started

Setting Up an Estimation Project
After you import the transient data and select the parameters and any initial
conditions (or states) to estimate, you are ready to configure the estimation
settings.

To create a container that stores the estimation settings:

1 In the Control and Estimation Tools Manager, right-click Estimation in
the workspace directory tree and select New.

2 Click the New Estimation node.

Adding Data Sets
After you select the New Estimation node, the Data Sets tab appears.
Here you choose the output data from the Simulink model that you want to
use in the estimation.

In this example, select the check box to the right of the New Data data set.

1-18

Setting Up an Estimation Project

Note If you imported multiple data sets, you can select them for estimation
by selecting the check box to the right of each desired data set. When using
several data sets, you increase the estimation precision. However, you also
increase the number of required simulations: for N parameters and M data
sets, there are M*(2N+1) simulations per iteration.

Then, specify the weight of each output from this model by setting the Weight
column in the Output data weights table.

The relative weights are used to place more or less emphasis on specific
output variables. The following are a few guidelines for specifying weights:

• Use less weight when an output is noisy.

• Use more weight when an output strongly affects parameters.

1-19

1 Getting Started

• Use more weight when it is more important to accurately match this model
output to the data.

Specifying and Setting Up Parameters
Select the New Estimation node in the workspace directory tree, and then
click the Parameters tab in the Control and Estimation Tools Manager. Here
you select which parameters to estimate and the range of values for the
estimation.

Note When you set the estimation parameters here, such as Minimum and
Maximum, this does not affect your settings in the Variables node. You
make these choices on a per estimation basis. You can move data to and from
theVariables node into the Estimation node.

1-20

Setting Up an Estimation Project

Here you select the parameters you want to estimate in the Estimate column.
Enter initial values for your estimation parameters in the Initial Guess
column. The default values in the Minimum and Maximum columns are
-Inf and +Inf, respectively, but you can select any range you want.

For this example, set gain1 to 10, gain2 to 100, gain3 to 50, and mean_speed
to 500. Or, use any initial values you like.

If you have good reason to believe a parameter lies within a finite range, it is
usually best not to use the default minimum and maximum values. Often,
there is computational advantage in specifying finite bounds if you can. It
can be very important to specify lower and upper bounds. For example, if a
parameter specifies the weight of a part, be sure to specify 0 as the absolute
lower bound if better knowledge is unavailable.

Opening the Estimation Pane
Click the Estimation tab to specify a new estimation.

1-21

1 Getting Started

Before you start, you can click Estimation Options to specify various
algorithm and simulation features. See “Selecting Optimization Methods”
on page 1-40 for more information.

Display Options
Clicking Display Options opens this dialog box.

Clearing a check box means that data will not appear in the display table
for the estimation.

1-22

Selecting Views for Plotting

Selecting Views for Plotting

Note An estimation must be created before creating views. Otherwise, the
Options table will be empty.

To watch the minimization progress:

1 Right-click the Views node in the Control and Estimation Tools Manager
and select New.

2 In the workspace directory tree, select New View to open the View Setup
pane.

3 Select the Cost function plot type by clicking the first cell in the Plot
Type column, located in the Select plot types table.

1-23

1 Getting Started

4 Select the Plot 1 check box in the Options table.

Click Show Plots. This displays an empty cost function plot. When you
run the estimation, the plot updates automatically.

Various types of plots are available, including

• Cost function — Plot the cost function values.

• Measured and simulated — Plot empirical data against simulated data.

• Parameter sensitivity — Plot the rate of change of the cost function as a
function of the change in the parameter. That is, plot the derivative of the
cost function with respect to the parameter being varied.

• Parameter trajectory — Plot the parameter values as they change.

• Residuals — Plot the error between the experimental data and the
simulated output.

This figure shows the plot generated by running the estimation, as described
in “Running the Estimation” on page 1-26.

1-24

Selecting Views for Plotting

1-25

1 Getting Started

Running the Estimation
In the Control and Estimation Tools Manager, select the New Estimation
node and click the Estimation tab.

Click Start to begin the estimation process. At the end of the iterations, the
window should resemble the following:

Usually, a lower cost function value indicates a successful estimation,
meaning that the experimental data matches the model simulation with the
estimated parameters.

The Estimation pane displays each iteration of the optimization algorithm.
To see the final values for the parameters, click the Parameters tab.

1-26

Running the Estimation

The values of these parameters are also updated in the MATLAB workspace.
So, if you specify the variable name in the Initial Guess column, you can
restart the estimation from where you left off at the end of a previous
estimation.

The cost function minimization is plotted below.

1-27

1 Getting Started

If the optimization went well, you should see your cost function converge on a
minimum value. The lower the cost, the more successful is the estimation.

1-28

Model Validation

Model Validation
After you complete an estimation, you can validate your results against
another set of data.

These are the basic steps needed to validate a model using the Control and
Estimation Tools Manager:

1 Add the validation data to the Transient Data sets.

2 Add a new validation task under the Validation node in the workspace
directory tree.

3 Edit the validation — select plot types you want from the Validation
Setup pane and select the validation data set you want to use.

4 Click Show Plots in the Validation Setup pane and view the results in
the plot window.

5 Compare the validation plots to the corresponding view plots to see if
they match.

The basic difference between the validation and views features is that you
can run validations after your estimation is complete. All views should be set
up before an estimation, and you can watch the views update in real time.
Validations can use other validation data sets for comparison with the model
response. Also, validations appear after you have completed an estimation
and do not update.

You can validate your data by comparing measured vs. simulated data for
your estimation data and validation data sets. Also, it is often useful to
compare residuals in the same way.

Example: Validating the Engine Idle Speed Model
If you have not run the engine idle speed demo, type

engine_idle_speed

at the MATLAB prompt and run the estimation. If you haven’t run an
estimation yet, see “How Simulink Parameter Estimation Works” on page 1-5.

1-29

1 Getting Started

To save time, double-click the box in the upper-left corner of the model to
import data and populate the required fields in the Control and Estimation
Tools Manager.

engine_idle_speed Simulink Model

Now that the estimation data is loaded, and the estimation task has been
created, the next step is to import validation data into the Control and
Estimation Tools Manager.

Loading and Importing the Validation Data
To load the validation data, type

load iodataval

at the MATLAB prompt. This loads the data into the MATLAB workspace.
The next step is to import this data into the tools manager. See “Importing
Transient Data” on page 1-8 for information on importing data, but the
quickest way is to follow these steps:

1 Right-click the Transient Data node in the workspace directory tree in
the Control and Estimation Tools Manager and select New.

1-30

Model Validation

2 Select New Data 2 from the Transient data sets pane and click Edit.

3 Right-click the New Data (2) node in the workspace directory tree and
select Rename. Change the name of the data to Validation Data.
(You can also change the name by double-clicking New Data (2) in the
Transient data sets pane and clicking Rename.)

4 In the Input Data pane, select the Data cell associated with Channel
- 1 and click Import. In the Data Import dialog box, select iodataval
and assign column 1 to the selected channel by entering 1 in the Assign
columns field. Click Import to import the data.

5 Select the Time/Ts cell and import time using the Data Import dialog box.

6 Similarly, in the Output Data pane, select Time/Ts and import time.

7 In the Output Data pane, select the Data cell associated with Channel
- 1 and click Import. Import the second column of data in iodataval by

1-31

1 Getting Started

selecting it from the list in the Import Data dialog box and entering 2 in the
Assign columns field. Click Import to import the data.

Your Control and Estimation Tools Manager should resemble this figure.

Performing Validation
After you import the data, right-click the Validation node and select New.
This opens the Validations pane in the Control and Estimation Tools
Manager.

1-32

Model Validation

To perform the validation:

1 Select New Validation in the workspace directory tree to open the
Validation Setup pane.

1-33

1 Getting Started

2 Click the Plot Type cell for Plot 1 and select Measured and simulated
from the menu.

3 In the Options area, select Validation Data in the Validation data set
list. Click Show Plots to open a plot figure window as shown below.

1-34

Model Validation

Measured (Validation) Versus Simulated Data Plot

4 Compare this with the plot of measured and simulated data from the
Views node of the workspace directory tree.

1-35

1 Getting Started

Measured and Simulated Data Views Plot

Because the validation data is entered as a Transient Data set, it appears in
the right plot as measured data. The left plot, however, is the measured and
simulated data that you should compare to the measured and simulated data
plot that used the validation data.

Residuals
To look at the residuals, select Residuals as the Plot Type for Plot 2. This
figure shows the resulting plot. In the Options area, select the Plot 2 check
box and click Show Plots.

1-36

Model Validation

Plot of Residuals Using the Validation Data

Compare the validation data residuals to the original data set residuals from
the Views node in the workspace directory tree.

1-37

1 Getting Started

Plot of Residuals Using the Test Data

The plot on the left agrees with the plot of the residuals for the validation
data. The right side has no plot because residuals were not calculated for the
validation data during the original estimation process.

1-38

Setting Options for Optimization

Setting Options for Optimization
You can set several options to tune the results of the optimization. These
options include the optimization algorithms and their tolerances.

To set options for optimization:

1 Select the New Estimation node in the workspace directory tree.

2 Click the Estimation tab.

3 Click Estimation Options to open the Options dialog box.

4 Click the Optimization Options tab and specify the options, as described
in the following sections:

• “Selecting Optimization Methods” on page 1-40

• “Selecting Optimization Termination Options” on page 1-40

• “Selecting Additional Optimization Options” on page 1-41

• “Specifying the Cost Function” on page 1-42

1-39

1 Getting Started

Selecting Optimization Methods
Both the algorithm and model size define the optimization method. Use the
Optimization method area in the Options dialog box to set algorithm and
the model size.

For the Algorithm parameter, the four options are

• Gradient descent — Uses the Optimization Toolbox function fmincon to
optimize the response signal subject to the constraints

• Nonlinear least squares — Uses a nonlinear least squares optimization
algorithm.

• Pattern search — Uses an advanced pattern search algorithm. This
option requires the Genetic Algorithm and Direct Search Toolbox.

• Simplex search — Uses the Optimization Toolbox function fminsearch,
which is a direct search method to optimize the response. Simplex search
is most useful for simple problems and is sometimes faster than Function
minimization for models that contain discontinuities.

By default, the Model size parameter is set to Large scale. When the
number of parameters you want to estimate is large, Model size must use
the default to increase computation speed. If your model is not very large, it
might be more efficient to select Medium scale. See the Optimization Toolbox
documentation for more information about optimization methods.

Selecting Optimization Termination Options
Specify termination options in the Optimization options area.

1-40

Setting Options for Optimization

Several options define when the optimization terminates:

• Diff max change — The maximum allowable change in variables for
finite-difference derivatives. See fmincon in the Optimization Toolbox
documentation for details.

• Diff min change — The minimum allowable change in variables for
finite-difference derivatives. See fmincon in the Optimization Toolbox
documentation for details.

• Parameter tolerance — Optimization terminates when successive
parameter values change by less than this number.

• Maximum fun evals — The maximum number of cost function
evaluations allowed. The optimization terminates when the number of
function evaluations exceeds this value.

• Maximum iterations — The maximum number of iterations allowed. The
optimization terminates when the number of iterations exceeds this value.

• Function tolerance — The optimization terminates when successive
function values are less than this value.

By varying these parameters, you can force the optimization to continue
searching for a solution or to continue searching for a more accurate solution.

Selecting Additional Optimization Options
At the bottom of the Optimization options pane is a group of additional
optimization options.

Additional options for optimization include

• Display level — Specifies the form of the output that appears in the
MATLAB command window. The options are Iteration, which displays
information after each iteration, None, which turns off all output, Notify,
which displays output only if the function does not converge, and Final,
which only displays the final output. Refer to the Optimization Toolbox

1-41

1 Getting Started

documentation for more information on what type of iterative output each
algorithm displays.

• Gradient type — When using Gradient Descent or Nonlinear least
squares as the Algorithm, Simulink Parameter Estimation calculates
gradients based on finite difference methods. The Refined method offers
a more robust and less noisy gradient calculation method than Basic,
although it does take longer to run optimizations using the Refined
method.

Specifying the Cost Function
The cost function is a function that optimization algorithms attempt to
minimize. You have the following options when selecting a cost function:

• Cost function — The default is SSE (sum of squared errors), which uses a
least-squares approach. You can also use SAE, the sum of absolute errors.

• Use robust cost — Makes the optimizer use a robust cost function instead
of the default least-squares cost. This is useful if the experimental data has
many outliers, or if your data is noisy.

1-42

Setting Options for the Simulation

Setting Options for the Simulation
To optimize the response signals of a model, Simulink Parameter Estimation
runs simulations of the model.

To set options for simulation:

1 Select the New Estimation node in the workspace directory tree.

2 Click the Estimation tab.

3 Click Estimation Options to open the Options dialog box.

4 Click the Simulation Options tab and specify the options, as described in
the following sections.

Selecting Simulation Time

1-43

1 Getting Started

By default, Start time and Stop time are automatically computed based on
the start and stop times specified in the Simulink model. To set alternative
start and stop times for the optimization, enter them under Simulation time.

Selecting Solvers

When running the simulation, Simulink solves the dynamic system using
one of several solvers. You can specify several solver options using the
Solver options area in the Options dialog box. The Type of solver can be
variable-step or fixed-step. Variable-step solvers keep the error within
specified tolerances by adjusting the step-size the solver uses. Fixed-step
solvers use a constant step-size. When your model’s states are likely to vary
rapidly, a variable-step solver is often faster. See the Simulink documentation
for information about solvers.

Variable-Step Solvers
When you select Variable-step as the solver Type, you can choose any of
the following as the Solver:

• discrete (no continuous states)

• ode45 (Dormand-Prince)

• ode23 (Bogacki-Shampine)

• ode113 (Adams)

• ode15s (stiff/NDF)

• ode23s (stiff/Mod. Rosenbrock)

• ode23t (Mod. stiff/Trapezoidal)

1-44

Setting Options for the Simulation

• ode23tb (stiff/TR-BDF2)

Variable-Step Solver Options
When you select Variable-step as the solver Type, you can also set several
other parameters that affect the step-size of the simulation:

• Maximum step size — The largest step-size Simulink can use during a
simulation.

• Minimum step size — The smallest step-size Simulink can use during a
simulation.

• Initial step size — The step-size Simulink uses to begin the simulation.

• Relative tolerance — The largest allowable relative error at any step in
the simulation.

• Absolute tolerance — The largest allowable absolute error at any step in
the simulation.

• Zero crossing control — Set to on for the solver to compute exactly
where the signal crosses the x-axis. This is useful when using functions
that are nonsmooth and the output depends on when a signal crosses the
x-axis, such as absolute values.

By default, Simulink automatically chooses values for these options. To
choose your own values, enter them in the appropriate fields.

Fixed-Step Solvers
When you select Fixed-step as the solver Type, you can choose any of the
following as the Solver:

• discrete (no continuous states)

• ode5 (Dormand-Prince)

• ode4 (Runge-Kutta)

• ode3 (Bogacki-Shanpine)

• ode2 (Heun)

• ode1 (Euler)

1-45

1 Getting Started

When you select Fixed-step as the solver Type, you can also set Fixed step
size, which determines the step-size the solver uses during the simulation.
By default, Simulink automatically chooses a value for this option.

1-46

Estimating Independent Parameters

Estimating Independent Parameters
Sometimes parameters in your model depend on independent parameters that
do not appear in the model. The following steps give an overview of how to
use Simulink Parameter Estimation to estimate independent parameters:

1 Add the independent parameters to the model workspace (along with
initial values).

2 Define a Simulation Start function that runs before each simulation of the
model. This Simulation Start function defines the relationship between the
dependent parameters in the model and the independent parameters in
the model workspace.

3 The independent parameters now appear in the Add Parameters dialog
box. Add these parameters to the list of parameters to be estimated.

Caution Avoid adding independent parameters together with their
corresponding dependent parameters to the lists of parameters to be
estimated. Otherwise the estimation could give incorrect results. For
example, when a parameter x depends on the parameters a and b, avoid
adding all three parameters to the list.

Example: Estimating Independent Paramters
Assume that the parameter Kint in the model srotut1 is related to the
parameters x and y according to the relationship Kint=x+y. Also assume that
the initial values of x and y are 1 and -0.7 respectively. To estimate x and y
instead of Kint, first define these parameters in the model workspace. To
do this:

1 At the MATLAB prompt, type

srotut1

This opens the srotut1 model window.

2 Select View > Model Explorer from the srotut1 window to open the
Model Explorer window.

1-47

1 Getting Started

3 In the Model Hierarchy tree, select the srotut1 > Model Workspace
node.

4 Select Add > MATLAB Variable to add a new variable to the model
workspace. A new variable with a default name Var appears in the
Contents of: Model Workspace pane.

5 Double-click Var to make it editable and change the variable name to x.
Edit the initial Value to 1.

6 Repeat steps 4 and 5 to add a variable y with an initial value of -0.7. The
Model Explorer window should resemble the following figure.

1-48

Estimating Independent Parameters

7 To add the Simulation Start function defining the relationship between
Kint and the independent parameters x and y, select File > Model
Properties in the srotut1 window.

8 In the Model Properties window, click the Callbacks tab.

9 Under Simulation start function, enter the name of a new M-file, for
example, srotut1_start.

10 Create a new M-file with this name. The contents of the M-file should
define the relationship between the parameters in the model and the
parameters in the workspace. For this example, the M-file should resemble
the following:

wks = get_param(gcs, 'ModelWorkspace')
x = wks.evalin('x')
y = wks.evalin('y')
Kint = x+y;

Note You must first use the get_param function to get the variables x and
y from the model workspace before you can use them to define Kint.

1-49

1 Getting Started

11 When you add a parameter to be estimated, x and y should now appear
in the Add Parameters dialog box.

1-50

2

Estimating Initial
Conditions

Why Estimate Initial Conditions?
(p. 2-2)

Reasons for estimating initial
conditions of states in your model

Estimating Initial Conditions
for Blocks with External Initial
Conditions (p. 2-3)

Tuning the initial conditions of a
block with external initial conditions

Example: Mass-Spring-Damper
System (p. 2-4)

An example that takes you
step-by-step through an estimation
of the initial position of a mass
attached to a spring

2 Estimating Initial Conditions

Why Estimate Initial Conditions?
Often, sets of measured data are collected at various times and under different
initial conditions. If you estimate parameters for your Simulink model using
one set, then try again with another, your parameter values may not match.
Given that Simulink Parameter Estimation attempts to find constant values
for parameters, this is clearly a problem.

Fortunately, Simulink Parameter Estimation has features that make this
task simpler. The Control and Estimation Tools Manager has an Estimated
States pane that lists the states available for initial condition estimation. So,
you can estimate initial conditions using procedures that are similar to those
you use to estimate parameters. You can then use these initial condition
estimates as a basis for estimating parameters for your Simulink model.

This chapter focuses on the steps required to estimate initial conditions, and
then estimate the parameters from these initial conditions.

2-2

Estimating Initial Conditions for Blocks with External Initial Conditions

Estimating Initial Conditions for Blocks with External
Initial Conditions

When an integrator block uses an initial-condition port, which you specify by
an IC block feeding into the integrator block, you cannot estimate the initial
conditions (ICs) of the integrator using Simulink Parameter Estimation.
This is because external ICs have priority over the ICs of a specific block to
maintain the integrity of the model.

To tune the ICs of an integrator block with external ICs, you must modify the
model to make the external signal into a tunable parameter. For example, you
can set the IC block that feeds into the integrator to be a tunable variable
that Simulink Parameter Estimation can estimate.

2-3

2 Estimating Initial Conditions

Example: Mass-Spring-Damper System
The figure below is a Simulink model of a mass-spring-damper system.

This example goes beyond what is included in the Simulink Parameter
Estimation demo that uses this model by providing in-depth discussion of
each task. If you want to run the demo, see the listings under Simulink for
Simulink Parameter Estimation on the Demo pane of the Help browser.

To open the model and two sets of model data with differing initial conditions,
type

msd_system

at the MATLAB prompt.

2-4

Example: Mass-Spring-Damper System

Model Parameters
The Simulink msd_system model’s output is the displacement (or position)
of the mass in a mass-spring-damper system, subject to a constant force F,
and an initial condition, x0, for the mass displacement. x0 is indicated by the
initial condition of the Position integrator block. Click the Start Simulation
button to run the simulation once and observe the response of the model to
two sets of parameter values.

The model parameters of interest are the mass, m, the viscous damping, b,
and the spring constant, k. For more information about physical modeling
of mass-spring-damper systems, see any elementary book on mathematical
modeling or on automatic control systems.

For the estimation of the model parameters m, b, and k, this model uses two
sets of experimental data. These data sets were obtained using two different
initial positions, x0=0.1 and x0=0.3, and also contain additive noise. A plot
of these data sets is shown in the figure above (top curves), along with the
simulated response (bottom curve) of the Simulink model msd_system for
x0=-0.1 and a nominal set of parameter values, m=8, k=500, and b=100.

2-5

2 Estimating Initial Conditions

Setting Up the Estimation Project
To set up the estimation of initial conditions and then transient state space
data, select Tools > Parameter Estimation in the msd_system model
window.

Importing Transient Data and Selecting Parameters
for Estimation
The process for importing transient data and selecting parameters for
estimation is discussed in “Importing Transient Data” on page 1-8 and
“Selecting Parameters for Estimation” on page 1-12.

1 In the Control and Estimation Tools Manager, select Estimation Task >
Transient Data in the workspace directory tree.

2 Right-click Transient Data and select New to add a new data set.

2-6

Example: Mass-Spring-Damper System

3 Right-click the New Data node in the workspace directory tree and select
Edit to open the Input Data, Output Data, and State Data panes.

4 In the Output Data pane, click Import and add yexp1 to the Data column
and texp1 to the Time/Ts column of the msd_system/Position state.

5 If you like, right-click New Data in the workspace directory tree and
rename it to Data set #1.

6 Repeat steps 1 to 5 to add a second data set, yexp2 and texp2, and rename
it to Data set #2.

Your Control and Estimation Tools Manager should resemble this figure:

2-7

2 Estimating Initial Conditions

Selecting Parameters and Initial Conditions for
Estimation
First, select the parameters you want to estimate for the Simulink msd_system
model. In this case, select b, k, and m. To do this:

1 Select the Variables node in the workspace directory tree of the Control
and Estimation Tools Manager.

2 Click the Estimation Parameters tab.

3 Click Add to open the Select Parameters dialog box.

4 Select the parameters b, k, and m, and then click OK.

5 Do the same with the Estimation States pane, and select
msd_system/Position from the Select States dialog box.

2-8

Example: Mass-Spring-Damper System

Your Control and Estimation Tools Manager should look like this.

Creating the Estimation Task
To create the New Estimation task in the Control and Estimation Tools
Manager, right-click the Estimation node in the workspace directory tree
and select Add. While the initial velocity is also a state of the model, assume
(for simplicity) that it is known to be 0. The estimation task for this case
is Estim (with IC).

In the Data Sets, Parameters, and States panes for the New Estimation
task, select all the check boxes in each table. Be sure to select Position for
both data sets in the States pane to estimate the initial condition for the
spring’s position.

The initial position estimates for the two data sets are known to differ, but set
the initial state guesses for both data sets to -0.1.

2-9

2 Estimating Initial Conditions

Running the Estimation and Viewing Results
Click Start in the Estimation pane to run the estimation. As the estimation
proceeds, the most current estimation of position response (yellow curve)
updates itself in the Scope. The curve appears to toggle between the two
experimental data sets, since the estimator uses the two sets successively to
update the estimates of the parameter values. The estimator converges to
the correct parameter values, within the scope of experimental noise and
optimization options settings, as indicated by the closeness of the estimated
response (yellow) to the experimental data (magenta). Good state estimates
for the initial position are also obtained, as can be observed from the States
tab of Estim(with IC) estimation task.

2-10

Example: Mass-Spring-Damper System

The estimation of initial states is important for obtaining the correct estimates
of the model parameters. Why not set the initial states (x0 in this case) as
parameters as well? The reason is that the initial states are not fixed physical
properties of the system. For different experimental data or operating
conditions, these states need not be unique. In this example, two data sets,
with distinct initial positions, were used together for a single estimation of
model parameters. While the estimates of the model parameters are unique,
the initial state (position) is different, and is estimated individually for each
data set.

2-11

2 Estimating Initial Conditions

2-12

3

Preprocessing Data

Simulink Parameter Estimation provides for detrending, exclusion, and
filtering of data.

Why Preprocess Data? (p. 3-2) An introduction to data
preprocessing

Data Preprocessing Tool (p. 3-3) An introduction to a graphical
user interface (GUI) for data
preprocessing

Excluding Data (p. 3-5) Various ways to exclude data from
your data sets

Detrending and Filtering (p. 3-14) Various ways to detrend and filter
your data sets

Miscellaneous Data Handling
(p. 3-16)

Additional features of the Data
Preprocessing Tool

3 Preprocessing Data

Why Preprocess Data?
When dealing with empirical data, it is often useful to remove outliers,
smooth, detrend, or otherwise treat the data to make it more tractable for
analysis and estimation purposes. Simulink Parameter Estimation provides
features that perform the following tasks:

• Exclusion — Eliminate outliers, represent them as NaNs, or use
interpolation.

• Detrending — Remove mean values or a straight line trend.

• Filter — Smooth data using a first-order filter, an arbitrary transfer
function, or an ideal filter.

Data can overwrite existing data, or be stored in a new file.

3-2

Data Preprocessing Tool

Data Preprocessing Tool
Simulink Parameter Estimation provides a GUI for data preprocessing, which
is the Data Preprocessing Tool. To open it:

1 Open the Control and Estimation Tools Manager.

2 Select the Transient Data node in the workspace directory tree, and then
choose the data you want to modify in the Input Data, Output Data,
or State Data pane.

3 Click Pre-process to open the Data Preprocessing Tool.

3-3

3 Preprocessing Data

In this chapter, the sample data is from the engine_idle_speed Simulink
model. See “How Simulink Parameter Estimation Works” on page 1-5 for an
overview of creating estimation projects and adding data sets.

With the Data Preprocessing Tool, you can

• Exclude data by selecting it with your mouse.

• Exclude data graphically by selecting regions on a plot.

• Exclude data by rules, such as upper or lower bounds.

• Detrend data.

• Filter data.

3-4

Excluding Data

Excluding Data
The three ways to exclude data are described in the following sections:

• “Selecting Data for Exclusion from the Data Editing Table” on page 3-5

• “Selecting Data for Exclusion from a Plot of the Data” on page 3-8

• “Selecting Data for Exclusion by a Rule” on page 3-11

You accomplish the first two manually, and for the last you specify a rule.
When you exclude data using manual selection, the excluded data is shown
as red. When you exclude data using a rule, the background color of the cell
becomes gray. When a portion of the data is excluded both manually and by a
rule, the data is red, and the background is gray.

Note Changes in data are visible everywhere. When you use the Data
Editing table, you can view the results in the data plot.

Selecting Data for Exclusion from the Data Editing
Table
The Data Editing table lists both the raw data set and the modified data
that you create.

3-5

3 Preprocessing Data

There are two tabs in the Data Editing pane: Raw data and Modified
data. The Raw Data pane shows the working copy of the data. For example,
if you exclude rows of data in the Raw data pane, the corresponding rows
of numbers become red in this table. By default the Modified data pane
represents the rows you removed by inserting NaNs.

3-6

Excluding Data

In the Modified data pane, you can choose to remove the excluded data
completely or interpolate it. See “Miscellaneous Data Handling” on page
3-16 for more information.

After you select data for exclusion, you can view it graphically by clicking
Exclude Graphically.

3-7

3 Preprocessing Data

As you make changes in the Data Editing pane, they immediately appear in
the Select Points for Preprocessing Rule window, and vice versa.

Selecting Data for Exclusion from a Plot of the Data
You can exclude data graphically. Click Exclude Graphically to open the
Select Points for Preprocessing Rule window.

3-8

Excluding Data

The way you exclude data is similar to the way you select a region for
zooming: place your cursor in the Input Data plot and drag the mouse to
draw a region of exclusion.

This figure shows an example of resulting data exclusion in the input data.

3-9

3 Preprocessing Data

In the Output Data plot, the excluded input data produces a blank area by
default. This corresponds to the NaNs that now represent excluded data. If
you choose to interpolate or remove the excluded data, the output data shows
the interpolated points.

When you make changes in the Select Points for Preprocessing Rule window,
they immediately appear in the Data Editing pane, and vice versa.

Selection Pane
By default, any box that you draw with your mouse selects data for exclusion,
but you can toggle between exclusion and inclusion using the Selection pane
on the left side of the Select Points for Preprocessing Rule window.

3-10

Excluding Data

Selecting Data for Exclusion by a Rule
A more precise way to exclude data is to use mathematical rules. The
Exclusion Rules pane in the Data Preprocessing Tool allows you to enter
customized rules for excluding data.

These are the rules you can use to exclude data:

• “Upper and Lower Bounds” on page 3-12

• “Outliers” on page 3-12

3-11

3 Preprocessing Data

• “MATLAB Expressions” on page 3-12

• “Flatlines” on page 3-12

Upper and Lower Bounds
Select the Bounds check box to activate upper and lower bound exclusion.
Enter numbers in the Exclude X and Exclude Y fields for upper and lower
bound exclusion. By default, the exclusion rule is to include the boundary
values, but you can use the menu to exclude the boundaries as well.

Outliers
Select the Outliers check box to activate outlier exclusion. You can set the
Window length to any positive integer, and use confidence limits from 0 to
100%. The window length specifies the number of data points used when
calculating outliers.

MATLAB Expressions
Use the MATLAB expression field to enter any mathematical expression
using MATLAB code. Use x as the variable name in your expression for the
data being tested.

Flatlines
If you have areas of your data set where the data is constant, providing no
new information, then you can choose to exclude those data points as flatlines.
The Window length field sets the minimum number of constant data points
required to define the area as a flatline.

3-12

Excluding Data

Example of Rule Exclusion
This figure shows data with a region of the x-axis excluded.

3-13

3 Preprocessing Data

Detrending and Filtering
You can both detrend and filter data using the Detrend/Filtering pane in
the Data Preprocessing Tool.

Detrending
To detrend, select the Detrending check box. You can choose constant or
straight line detrending. Constant detrending removes the mean of the data
to create zero-mean data. Straight line detrending finds linear trends (in the
least-squares sense) and then removes them.

Filtering
You have these choices for filtering your data:

• First order — A filter of the type
1

1τs +
where τ is the time constant that you specify in the associated field.

3-14

Detrending and Filtering

• Transfer function — A filter of the type

a s a s a

b s b s b
n

n
n

n

m
m

m
m

+ + +
+ + +

−
−

−
−

1
1

0

1
1

0

…

…

where you specify the coefficients as vectors in the associated A
coefficients and B coefficients fields.

• Ideal — An idealized (noncausal) filter, either stop or pass band. Specify
either filter as a two-element vector in the Range (Hz) field. These filters
are ideal in the sense that there is no finite rolloff or ripple; the ends of the
ranges are perfectly horizontal in the frequency domain.

3-15

3 Preprocessing Data

Miscellaneous Data Handling
There are a few miscellaneous data handling features in the Data
Preprocessing Tool.

Handling Missing Data
You can use the Missing Data Handling pane at the bottom of the Data
Preprocessing Tool to remove rows of data, or to interpolate between points
to fill in missing data.

Removing Rows
If you select the Remove rows where check box, the affected rows are
removed from the Modified data pane. If you have multiple columns of
data, select all to remove rows in which all the data is excluded. Select any
to remove any excluded cell. In the case of one-column data, any and all
are equivalent.

Interpolation
You have two choices if you want to interpolate data: zero-order hold (zoh)
and linear interpolation (Linear). Select the Interpolate missing values
using interpolation method check box and choose which method you want
from the list. The results appear in the Modified data pane.

Loading Data and Saving Modified Data Sets
At the top of the Data Preprocessing Tool, there is a region for selecting data
sets for preprocessing, and for saving modified data sets.

When you have multiple data sets, select the one you want to preprocess from
the Modify data from list.

3-16

Miscellaneous Data Handling

To overwrite an existing data set, select the existing dataset option and
choose the data set you want to overwrite. If you want to save the data
set under a new name, select new dataset and type the new name in the
associated field.

3-17

3 Preprocessing Data

3-18

4

Managing Multiple Projects

Simulink Parameter Estimation works seamlessly with other MathWorks
products to perform multiple tasks on multiple projects.

Multiple Projects and Tasks (p. 4-2) A brief discussion of handling
multiple projects with multiple tasks

Saving Control and Estimation Tools
Manager Projects (p. 4-3)

How to save projects for later

Opening Control and Estimation
Tools Manager Projects (p. 4-4)

How to open existing projects

4 Managing Multiple Projects

Multiple Projects and Tasks
The Control and Estimation Tools Manager works seamlessly with products
in the Controls and Estimation family. In particular, if you have licenses
for Simulink Control Design or Model Predictive Control, you can use these
products to perform tasks on projects that you have created in Simulink
Parameter Estimation, and vice versa.

This figure shows a tools manager with multiple projects and multiple tasks.

You can save projects individually, or group multiple projects together in one
saved file. This chapter describes how to do this.

4-2

Saving Control and Estimation Tools Manager Projects

Saving Control and Estimation Tools Manager Projects
A Control and Estimation Tools Manager project can consist of multiple
tasks including those from Simulink Control Design, Simulink Parameter
Estimation, and the Model Predictive Control Toolbox. Each task contains
data, objects, and results for the analysis of a particular model.

To save your project as a MAT-file, select File > Save in the Control and
Estimation Tools Manager window.

To save multiple projects within one file:

1 In the Save Projects dialog box, select the projects that you want to save.

2 Click OK.

3 Choose a directory and name for your project file by either browsing for a
file or typing the full path and filename in the Save as field. Click Save.

4-3

4 Managing Multiple Projects

Opening Control and Estimation Tools Manager Projects
To open previously saved projects, select File > Load in the Control and
Estimation Tools Manager window.

In the Load Projects dialog box, choose a project file by either browsing for
the directory and file, or by typing the full path and filename in the Load
from field. Project files are always MAT-files. The projects within this file
appear in the Projects list.

Select the projects that you want to load, then click OK. When a file contains
multiple projects, you can choose to load them all or just a few.

4-4

5

Adaptive Lookup Tables

What Are Lookup Tables? (p. 5-2) A brief description of the lookup
table concept

How Adaptive Lookup Tables Work
(p. 5-3)

More details on adaptive lookup
tables

Implementation of Adaptive Lookup
Tables (p. 5-4)

What adaptive lookup tables look
like in Simulink

Example: n-D Adaptive Lookup
Table (p. 5-8)

An example using a
multidimensional adaptive lookup
table

5 Adaptive Lookup Tables

What Are Lookup Tables?
Lookup tables are used to store numeric data in a multidimensional array
format. In the simpler two-dimensional case, lookup tables can be represented
by matrices. Each element of a matrix is a numerical quantity, which can be
precisely located in terms of two indexing variables. At higher dimensions,
lookup tables can be represented by multidimensional matrices, whose
elements are described in terms of a corresponding number of indexing
variables.

Lookup tables provide a means to capture the dynamic behavior of a physical
(mechanical, electronic, software) system. The behavior of a system with
M inputs and N outputs can be approximately described by using N lookup
tables, each consisting of an array with M dimensions.

Lookup tables are usually generated by experimentally collecting or
artificially creating the input and output data of a system. In general, as
many indexing parameters are required as the number of input variables.
Each indexing parameter may take a value within a predetermined set of
data points, which are called the breakpoints. The set of all breakpoints
corresponding to an indexing variable is called a grid. So, a system with
M inputs is girded by M sets of breakpoints. Given the input data, the
breakpoints are then used to locate the array elements, where the output data
of the system are stored. For a system with N outputs, N array elements are
located and the corresponding data are stored at these locations.

Once a lookup table is created using the input and output measurements as
described above, the corresponding multidimensional array of values can be
used in applications without the need of remeasuring the system outputs. In
fact, only the input data is required to locate the appropriate array elements
in the lookup table and the approximate system output can be read from the
data stored at these locations. Therefore, a lookup table provides a suitable
means of capturing the input-output mapping of a static system in the form of
numeric data stored at predetermined array locations.

5-2

How Adaptive Lookup Tables Work

How Adaptive Lookup Tables Work
The generation of lookup tables as described above establishes a permanent
and static mapping of input-output behavior of a physical system. Statically
defined lookup tables cannot accommodate the time-varying behavior
(characteristics) of a physical plant. On the other hand, it is well known
that the behavior of actual physical systems often vary with time due to
wear, environmental conditions, and manufacturing tolerances. Under such
variations, the static mapping of input-output behavior of a plant described
by the lookup table may no longer provide a valid representation of the plant
characteristics.

Adaptive lookup tables, on the other hand, incorporate the time-varying
behavior of physical plants into the lookup table generation and maintenance
process while providing all of the functionality of a regular lookup table.

The adaptive lookup table receives the input and output measurements of a
plant’s behavior, which are then used to dynamically create and update the
content of the underlying lookup table. In addition to requiring the input data
to create the lookup table, the adaptive lookup table also uses the output
data of the plant to recalculate the table values. As an example, the output
data of the plant can be collected by placing sensors at appropriate locations
in a physical system.

The input measurements are used to locate the array elements by comparing
these input values with the breakpoints defined for each indexing variable.
Next, the output measurements are used to recalculate the numeric value
stored at these array locations. However, unlike a regular table, which only
stores the array data before the actual use of the lookup table, the adaptive
table continuously improves the content of the lookup table. This continuous
improvement of the table data is referred to as the adaptation or learning
process.

The adaptation process involves statistical and signal processing algorithms
to recapture the input-output behavior of the plant. The adaptive lookup
table always tries to provide a valid representation of the plant dynamics
even though the plant behavior may be time varying. The underlying signal
processing algorithms are also robust against reasonable measurement noise
and they provide appropriate filtering of noisy output measurements.

5-3

5 Adaptive Lookup Tables

Implementation of Adaptive Lookup Tables
The MathWorks implements adaptive lookup tables as Simulink blocks. These
blocks create multidimensional lookup tables from measured or simulated
data. The inputs and outputs of a n-D Adaptive Lookup Table block with
two inputs are shown below.

Adaptive Lookup Table Block Showing Inputs and Outputs

The following are descriptions of the input and output parameters:

• The inputs u and y are the coordinate data and system output
measurements, respectively. For example, if you want to create a lookup
table to model the behavior of an engine’s efficiency as a function of engine
rpm and manifold pressure, u = [rpm, pressure] and y = [efficiency].

• The initial table data may be entered either as a dialog box parameter
(by double-clicking the block) or as an input port (i.e., the input port Tin
in the figure). You can start, stop, and reset the adaptation through the
Enable input port.

• The outputs of the block include the value of the currently adapted table
cell (Y), the number (N) of that cell (which may be specified through the
block dialog box), and if required, the whole adapted table data (Tout).

Adaptive Lookup Table Library
Three adaptive lookup tables are available in Simulink Parameter Estimation.

5-4

Implementation of Adaptive Lookup Tables

The three blocks are

• Adaptive Lookup Table (1D Stair-Fit) — One-dimensional adaptive lookup

• Adaptive Lookup Table (2D Stair-Fit) — Two-dimensional adaptive lookup

• Adaptive Lookup Table (nD Stair-Fit) — Multidimensional adaptive lookup
(use this for dimension 3 or higher)

Using Adaptive Lookup Tables in Simulink Models
A typical Simulink diagram using an adaptive lookup table block is shown
below.

5-5

5 Adaptive Lookup Tables

Simulink Diagram Using an Adaptive Lookup Table

In this figure, the Experiment Data block imports a set of experimental data
into the Simulink environment through MATLAB workspace variables. The
initial table is specified through a constant matrix block. When the simulation
runs, the initial table begins to adapt to new data inputs and the resulting
table is copied to the block’s output.

Real-Time Lookup Tables
You can use experimental data from sensor measurements collected by
running various tests on a system in real time. The measured data is then
sent to the adaptive table block to generate a lookup table describing the
relation between the system inputs and output.

The Adaptive Lookup Table block may also be used in a real-time environment,
where some time-varying properties of a system need to be captured. This
can be done by generating C code using Real-Time Workshop®, which can
then be run in an xPC or dSpace environment. Since the adaptation may be
started, stopped, or reset if desired, some logic may be used to adapt the table
data only when it is desired. The Cell No output, and the Enable and Lock
inputs facilitate this process. The Enable input is used to start and stop the

5-6

Implementation of Adaptive Lookup Tables

adaptation, while the Lock input is used to update only one of the table cells.
The Lock input combined with some logic using the Cell No output provide
the means for updating only the desired table cells during a simulation run.

Setting Adaptive Lookup Table Parameters
Adaptive lookup tables are highly configurable, as shown below.

n-D Adaptive Lookup Table dialog box

For details on how to set these parameters, see the individual reference pages.

5-7

5 Adaptive Lookup Tables

Example: n-D Adaptive Lookup Table
This example shows an n-D adaptive lookup table at work and includes many
of the key features associated with adaptive lookup tables. Type

enginetable

at the MATLAB prompt to open this model.

This model has several key features:

• Input — The adaptive lookup table input is the experimental data. It is
also possible to make the original table itself an input.

• An enable feature — You can turn the adaptation on and off during the
estimation to see how the basic features work.

• A lock feature — You can lock the table so that only one cell is adapting.
This is useful if you have one section in your data that is highly erratic or
otherwise difficult for the algorithm to handle.

5-8

Example: n-D Adaptive Lookup Table

• Output — Adaptive lookup breakpoints are the output data.

Running the Example
To start the enginetable simulation, select Simulation > Start. Or, on
Microsoft Windows, click the Start Simulation button in the Simulink
toolbar.

The simulation begins by populating the adaptive lookup table with random
data. This figure shows the input and adaptive data side by side.

As the simulation progresses, the surface on the right adapts to match the
measured input data. This figure shows the final adaptation.

5-9

5 Adaptive Lookup Tables

The fit is quite good. Try using the enable and lock features to see how they
change the adaptation.

5-10

6

Estimating from the
Command Line

Simulink Parameter Estimation provides an object-oriented command-line
API for the estimation problem.

Introduction (p. 6-3) A brief discussion of the estimation
problem in an object-oriented context

Example: Estimating Parameters
and Initial Conditions of the F14
Model (p. 6-5)

How to create and simulate
an estimation project from the
command line

Creating and Customizing
Estimation Projects (p. 6-14)

Using properties and methods to
specify features of the estimation
project

Creating Transient Data Objects
(p. 6-15)

How to instantiate and use transient
data objects, which contain input
and output data

Creating State Data Objects (p. 6-20) How to instantiate and use state data
objects, which contain information
about known states in your Simulink
model

Creating Transient Experiment
Objects (p. 6-23)

How to instantiate and use
parameter objects, which maintain
data about parameters you want to
estimate

Creating Parameter Objects (p. 6-26) How to instantiate and use state
objects, which maintain data about
the block states you want to estimate

6 Estimating from the Command Line

Creating State Objects (p. 6-30) How to instantiate and use transient
experiment objects

Creating Estimation Objects (p. 6-34) How to instantiate and use
estimation objects, which coordinate
your model, experiment, parameter,
and state objects

6-2

Introduction

Introduction
In addition to the Control and Estimation Tools Manager, Simulink Parameter
Estimation provides a collection of functions for performing parameter
and state estimation. These functions perform the same tasks as the tools
manager, but have the advantages of command-line execution. When you
perform a state or parameter estimation using the Simulink Parameter
Estimation GUI, Simulink Parameter Estimation creates MATLAB objects
for all the states and parameters of your model. If you have a large number
of states or parameters, this can use up large amounts of memory and cause
computational delays. With the command-line approach, only those states
and parameters that you select are assigned MATLAB objects, which is more
efficient.

In addition, the command-line approach is useful for batch jobs, where, for
example, you may want to test large numbers of models.

Note Simulink Parameter Estimation uses MATLAB objects to perform
estimation tasks. This chapter discusses what you need to know about
object-oriented programming for using Simulink Parameter Estimation,
but see the MATLAB Programming documentation for a description of
object-oriented programming in MATLAB.

The command-line interface for Simulink Parameter Estimation requires a
Simulink model as a starting point for analysis and estimation. Once you have
selected a candidate model, the estimation process consists of these steps:

1 Defining experiments consisting of empirical data sets and the operating
conditions and/or initial conditions of your model

2 Selecting the variables and states to be estimated

3 Performing the estimation

4 Reviewing the results and iterating as necessary

5 Validating estimation results

6-3

6 Estimating from the Command Line

The following sections discuss these topics:

• “Example: Estimating Parameters and Initial Conditions of the F14 Model”
on page 6-5 — How to perform the estimation process using command-line
functions

• “Creating and Customizing Estimation Projects” on page 6-14 — How to
use methods and properties to customize your estimation project’s features

6-4

Example: Estimating Parameters and Initial Conditions of the F14 Model

Example: Estimating Parameters and Initial Conditions
of the F14 Model

To define an experiment, you must start with a Simulink model. For this
example, type

f14

to load the F14 fighter jet model into the MATLAB workspace. The figure
below shows the f14 model.

F14 Fighter Jet Model

This example outlines the basics of constructing an estimation project using
object-oriented code. Only what you need to run the example is presented; see
“Creating and Customizing Estimation Projects” on page 6-14 for details on
all the properties and methods associated with parameter estimation.

6-5

6 Estimating from the Command Line

Baseline Simulation
Before running an estimation, you need a baseline for data comparison. First,
you must choose parameters and states’ initial conditions for estimation. This
example uses Ta, the actuator time constant, and Zd and Md, the vertical
velocity and pitch rate gains, respectively. Then use the code below to run the
Simulink f14 model. Note that this is standard Simulink code and does not
involve Simulink Parameter Estimation in any way. See sim in the Simulink
Reference documentation for information about running Simulink models
from the MATLAB command line.

%% Open the model and load experimental data.
open_system('f14')
load f14_estim % Load empirical I/O data.

%% Set initialize unknown parameters
% Actuator time constant (ideal: Ta = 0.05)
Ta = 0.5;

% Aircraft dynamic model parameters (ideal: Md = -6.8847,
% Zd = -63.998)
Md = -1; Zd = -80;

%% Plot measured data and simulation results
[T,X,Y] = sim('f14', time, [], [time iodata(:,1)]);
plot(time, iodata(:,2:3), T, Y, ' ');
legend('Measured angle of attack', 'Measured pilot g force', ...

'Simulated angle of attack', 'Simulated pilot g force');

The following figure appears.

6-6

Example: Estimating Parameters and Initial Conditions of the F14 Model

As you can see, the measured and simulated data are a poor match. The
rest of this section describes how to estimate values for Ta, Zd, and Md that
result in a better match of data sets.

Creating a Transient Experiment Object
After you have a model and identify the parameters you want to
estimate, the next step is to create the objects required for an estimation.
ParameterEstimator is both the name of the class and the object instantiated
by that class. Classes are created by a constructor; objects are created by
invoking the class name with parameters.

First, create an estimation project object. This is the constructor syntax:

hExp = ParameterEstimator.TransientExperiment('f14');

MATLAB responds with information about the f14 model.

6-7

6 Estimating from the Command Line

Experimental transient data set for the model 'f14':

Output Data
(1) f14/alpha (rad)
(2) f14/Nz Pilot (g)

Input Data
(1) f14/u

Initial States
(1) f14/Actuator Model
(2) f14/Aircraft Dynamics Model/Transfer Fcn.1
(3) f14/Aircraft Dynamics Model/Transfer Fcn.2
(4) f14/Controller/Alpha-sensor Low-pass Filter
(5) f14/Controller/Pitch Rate Lead Filter
(6) f14/Controller/Proportional plus integral compensator
(7) f14/Controller/Stick Prefilter
(8) f14/Dryden Wind Gust Models/Q-gust model
(9) f14/Dryden Wind Gust Models/W-gust model

Assigning Experimental Data to Inputs and Outputs
of the Model
After you create a ParameterEstimator object, assign input and output
experimental (i.e., empirical) data.

%% Create objects to represent the experimental data sets.
set(hExp.InputData(1), 'Data', iodata(:,1), 'Time', time);

set(hExp.OutputData(1), 'Data', iodata(:,2), 'Time', ...
time, 'Weight', 5);

set(hExp.OutputData(2), 'Data', iodata(:,3), 'Time', time);

Note In general, for models with multiple inputs and outputs, you must
independently assign one data object to each input and output port. The
data object you assign to a specific port can be a vector or a matrix that
corresponds to that channel. You cannot use a single I/O port to represent
multiple channels.

6-8

Example: Estimating Parameters and Initial Conditions of the F14 Model

Creating Parameter Objects for Estimation
To activate parameters for estimation, you must create parameter objects for
the parameters you want to estimate. For this example, use Ta, the actuator
time constant, and Zd and Md, the vertical velocity and pitch rate gains,
respectively. The Zd and Md gains are located in the F14 aircraft dynamics
subsystem.

First, create ParameterEstimator objects for the parameters you want to
estimate.

%% Create objects to represent parameters.
hPar(1) = ParameterEstimator.Parameter('Ta');
set(hPar(1), 'Minimum', 0.01, 'Maximum', 1, 'Estimated', true)

hPar(2) = ParameterEstimator.Parameter('Md');
set(hPar(2), 'Minimum', -10, 'Maximum', 0, 'Estimated', true)

hPar(3) = ParameterEstimator.Parameter('Zd');
set(hPar(3), 'Minimum', -100, 'Maximum', 0, 'Estimated', true)

6-9

6 Estimating from the Command Line

%% Create objects to represent initial states.
hIc(1) = ParameterEstimator.State('f14/Actuator Model');
set(hIc(1), 'Minimum', 0, 'Estimated', false);

You can also use dot notation here. For example, instead of

set(hPar(2), 'Minimum', -10, 'Maximum', 0, 'Estimated', true)

you can write

hPar(2).Estimated=true;
hPar(2).Minimum=-10;
hPar(2).Maximum=0;

Creating an Estimation Object and Running the
Estimation
Finally, create an estimation object and run the estimation, using gcs to get
the full pathname to the Simulink model.

hEst = ParameterEstimator.Estimation(gcs, hPar, hExp);
hEst.States = hIc;

%% Setup estimation options
hEst.OptimOptions.Algorithm = 'lsqnonlin';
hEst.OptimOptions.GradientType = 'refined';
hEst.OptimOptions.Display = 'iter';

%% Run the estimation
estimate(hEst);

%% Plot measured data and final simulation results
[T,X,Y] = sim('f14', time, [], [time iodata(:,1)]);
figure
plot(time, iodata(:,2:3), T, Y, ' ');
legend('Measured angle of attack', 'Measured pilot g force', ...

'Simulated angle of attack', 'Simulated pilot g force');

6-10

Example: Estimating Parameters and Initial Conditions of the F14 Model

This figure shows the results of the estimation.

The measured and simulated outputs now appear to be a close match. Next,
look at the estimated values to see how they compare with the default values
of the f14 model.

%% Look at the estimated values
find(hEst.Parameters, 'Estimated', true)

6-11

6 Estimating from the Command Line

MATLAB responds with

(1) Parameter data for 'Ta':

Parameter value : 0.05
Initial guess : 0.5

Estimated : true

Referenced by:

(2) Parameter data for 'Md':

Parameter value : -6.884
Initial guess : -1

Estimated : true

Referenced by:

(3) Parameter data for 'Zd':

Parameter value : -63.99
Initial guess : -80

Estimated : true

Referenced by:

6-12

Example: Estimating Parameters and Initial Conditions of the F14 Model

Note You can use the find command to identify scalar, vector, or matrix
parameters. The dimensions of the Estimated value you specify as the find
argument must match the dimensions of the parameters you are trying to
find. For example,

find(hEst.Parameters, 'Estimated', true)

finds only scalar estimated parameters. However,

find(hEst.Parameters, 'Estimated', [true;true])

finds only vector estimated parameters with dimensions 1-by-2 and excludes
all scalar parameters.

You can verify that these values match the default values of the f14 model by
clearing your workspace, loading the model, and checking the values.

clear all
f14
whos

6-13

6 Estimating from the Command Line

Creating and Customizing Estimation Projects
The following sections describe in more detail how to create and modify
transient data and estimation objects:

• “Creating Transient Data Objects” on page 6-15

• “Creating State Data Objects” on page 6-20

• “Creating Transient Experiment Objects” on page 6-23

• “Creating Parameter Objects” on page 6-26

• “Creating State Objects” on page 6-30

• “Creating Estimation Objects” on page 6-34

First, a quick look at terminology:

• Objects are instantiations of classes.

• Classes contain, or rather, define, properties and methods.

• You use a constructor to create an instance of an object, and use the set
method or dot notation to modify the properties of your objects.

6-14

Creating Transient Data Objects

Creating Transient Data Objects
Estimating parameters requires a transient data object, which you create
using a constructor. The syntax to create a transient data object is

% I/O port block
h = ParameterEstimator.TransientData('block');
% Internal block
h = ParameterEstimator.TransientData('block',portnumber);

h = ParameterEstimator.TransientData('block',data,time);
h = ParameterEstimator.TransientData('block',data,Ts);
h = ParameterEstimator.TransientData('block',portnumber,data,time);
h = ParameterEstimator.TransientData('block',portnumber,data,Ts);

Properties of Transient Data Objects
Descriptions of properties of the transient data object and the associated
input parameters are given below.

Transient Data Object Properties

Property Description

Block Name of the Simulink block with which the data is
associated. Must be a string.

PortType The type of signal that this object represents is determined
in the constructor from the Block property, which may be
Inport, Outport, or Signal.

PortNumber For data associated with the outputs of regular blocks
or subsystems, this property specifies the output port
number of interest. The default value is 1.

Dimensions Dimensions of the data required for this data set. It is
computed from the CompiledPortDimensions property of
the appropriate port of the block, and it defines the size
of other properties. Currently, Simulink supports scalar,
vector, or matrix signals, so Dimensions is either a scalar
or a 1-by-2 array.

6-15

6 Estimating from the Command Line

Transient Data Object Properties (Continued)

Property Description

Data Actual experimental data. Its size must be consistent
with the Dimensions property. To conform with Simulink
conventions, the data is stored in the following formats:

• Scalar or vector-valued data. The data is of the form Ns
m, where Ns is the number of data samples, and m is
the number of channels in the signal.

• Multidimensional data (matrix and higher dimensions).
The data is of the form m1 . . . mn Ns, where Ns is
the number of data samples, and mi is the number of
channels in the ith dimension of the signal.

• For missing or unspecified data, NaNs are used.

Ts,
Tstart,
Tstop

For uniformly sampled data, Ts is the sample time and
Tstart is the start time of the signal. The stop time Tstop
and the time vector Time are given by

Tstop = Tstart + Ts * (Ns -1)

Time = Tstart : Ts : Tstop

For nonuniform time data, Ts is set to NaN, and the start
and stop times are calculated from the time vector.

6-16

Creating Transient Data Objects

Transient Data Object Properties (Continued)

Property Description

Time The time data in column vector format. The length of Time
must be consistent with the number of samples in Data.

For a nonuniformly spaced Time vector, its length should
match the length of Data.

Otherwise, Time is automatically adjusted based on the
length of Data.

Modifying Ts resets Time internally. In this case, Time is
a virtual property whose value is computed from Ts and
Tstart when you request it. The rules for setting time
related properties are

• Modifying Time sets

Ts = NaN
Tstart = Time(1)

• If the time vector is uniformly spaced, a sample time
Ts is calculated.

• Modifying Tstart translates time forward or backward.

• Modifying Ts sets Time = [] internally and generates
it when required by the simulation.

Weight The weight associated with each channel of this data set.
It is used to specify the relative importance of signals.
The default value is 1.

InterSample Interpolation method between samples can be zero-order
hold (zoh) or first-order hold (foh). This property is used
for data preprocessing.

6-17

6 Estimating from the Command Line

Modifying Properties of Transient Data Objects
After a transient data object is created, you can modify its properties using
this syntax:

in1.Data = rand(2,1,10); % 10 data values each of size [2 1]
in1.Time = 1:10; % Automatically converted to column vector

Some properties (e.g., Weight) support scalar expansion with respect to the
value of the Dimensions property.

Example: Assigning Input Port Data
To assign data to an input port with 2-by-3 port dimensions, use

in1 = ParameterEstimator.TransientData(gcb, rand(2,3,100), 0.05)

MATLAB responds with

(1) Transient data for Inport block 'portdata_test_noSim/By//Pass
Air Valve Voltage':
Sampling interval: 0.05 sec.
Data set has 100 samples and 6 channels.

6-18

Creating Transient Data Objects

Using Class Methods
Descriptions of two important methods are given below:

• select — Extracts a portion of data. The result is returned in a new
transient data object.

in2 = select(in1, 'Sample', 10:100); % 91 samples
in3 = select(in1, 'Range', [1 4]); % Samples for 1<t<4
% ... or an alternative
in3 = select(in1, 'Sample', find(in1.Time > 1 & in1.Time < 4));

To extract data from a subset of available channels, use

in4 = select(in1, 'Channel', [1 3 2]);
% channels 1,3,and 2 in this order

• hiliteBlock — Highlights the block associated with this object in the
Simulink diagram.

6-19

6 Estimating from the Command Line

Creating State Data Objects
The ParameterEstimator.StateData object defines the states of a dynamic
Simulink block. It is used in a transient estimation context to define known
initial conditions of a block diagram model, and in a steady-state estimation
context to define the known states of the model.

For example, the Simulink model of a simple mass-spring-damper system
has two integrator blocks to generate velocity and position signals from
acceleration and velocity values, respectively, during simulation. If the
corresponding physical system is known to be at rest at the beginning of an
experiment, the initial states (velocity and position) of these integrators are
zero. So, two @StateData objects can be created to describe these known
initial conditions.

The syntax for creating this object is

h = ParameterEstimator.StateData('block');
h = ParameterEstimator.StateData('block', data);

In the first constructor, the state vector is initialized from the model
containing the block.

Properties of the State Data Object
Descriptions of some important properties are given in the table below.

State Data Object Properties

Property Description

Block Name of the Simulink block whose states are defined
by this object.

Dimensions Scalar value to store the number of states of the relevant
block.

6-20

Creating State Data Objects

State Data Object Properties (Continued)

Property Description

Data Column vector to store the initial value of the state
for the block specified by this object. The length of
this vector should be consistent with the Dimensions
property. Since the underlying Simulink model also
stores an initial state vector for all dynamic blocks, the
following conventions are used to resolve the initial state
values during estimations:

• If Data is not empty, use it when forming the state
vector.

• If Data is empty, get the state vector for this block
from the model. This behavior is useful when using
helper methods to create an experiment object that
instantiates empty state data objects for all dynamic
blocks in the Simulink model.

• If there is no state data object for a dynamic block in
the model, get the state vector of that block from the
model. This behavior is useful for command-line users,
when there are too many states in the model and only
a few of them have to be set to different initial values.

Ts Sampling time of discrete blocks. Set to 0 for continuous
blocks. This property is read only and is currently used
for information only.

Domain String to hold the physical domain of the block. Used for
SimMechanics or SimPowerSystems blocks with states.

6-21

6 Estimating from the Command Line

Example: Initial Condition Data
To create an empty initial condition object for the engine_idle_speed/
TransferFcn2, use

st1 = ParameterEstimator.StateData ...
('engine_idle_speed/Transfer Fcn2', [1 2])

(1) State data for 'f14/Dryden Wind Gust Models/W-gust model'
block:
The block has 2 continuous state(s).
State value : [1;2]

Modifying Properties
After a state data object is created, you can modify its properties using this
syntax:

st1.Data = [2 3]; % State vector of size 2

Some properties (e.g., Data) support scalar expansion with respect to the
value of the Dimensions property.

Using Class Methods
Description of two important methods are given below:

• hiliteBlock — Highlights the block associated with this object in the
Simulink diagram.

• update — Updates the object after the Simulink model has been modified.
If the Dimensions property value changes, the other properties are reset to
their default values.

6-22

Creating Transient Experiment Objects

Creating Transient Experiment Objects
The @TransientExperiment object encapsulates data measured at the input
and output ports of a system during a single experiment, as well as the
system’s known initial states.

The syntax to create a transient experiment object is

h = ParameterEstimator.TransientExperiment('model');

where model specifies the name of the Simulink model.

Properties of Transient Experiment Objects
Descriptions of some important properties are given in the table below.

Transient Experiment Object Properties

Property Description

Model Simulink model with which this experiment is
associated.

InputData,
OutputData

Transient data objects associated with appropriate I/O
blocks in the model. Blocks with unassigned objects
or objects with no data are not used in estimations,
meaning:

• For input ports, assign zeros to these ports/channels
during simulation.

• For output ports, don’t use these ports/channels in
the cost function.

InitialStates State data objects associated with appropriate dynamic
blocks in the model.

InitFcn Function to be executed to configure the model for this
particular experiment.

6-23

6 Estimating from the Command Line

Example: Creating an F14 Experiment
To create an empty transient experiment for the f14 model, use

exp1 = ParameterEstimator.TransientExperiment('f14')
Experimental (Transient) data set for the model 'f14':
Outputs
(1) f14/alpha (rad)
(2) f14/Nz Pilot (g)
Inputs
(1) f14/u
Initial States
(1) f14/Actuator Model
(2) f14/Aircraft Dynamics Model/Transfer Fcn.1
(3) f14/Aircraft Dynamics Model/Transfer Fcn.2
(4) f14/Controller/Alpha-sensor Low-pass Filter
(5) f14/Controller/Pitch Rate Lead Filter
(6) f14/Controller/Proportional plus integral compensator
(7) f14/Controller/Stick Prefilter
(8) f14/Dryden Wind Gust Models/Q-gust model
(9) f14/Dryden Wind Gust Models/W-gust model

Example: Creating a Van der Pol Experiment from
User Objects
To create a transient experiment from user objects for I/Os and states, use

out1 = ParameterEstimator.TransientData('vdp/Out1');
ic1 = ParameterEstimator.StateData('vdp/x1');
exp1 = ParameterEstimator.TransientExperiment...
(gcs, [], out1, ic1);
Experimental (Transient) data set for the model 'vdp':
Outputs
(1) vdp/Out1
Inputs
(none)
Initial States
(1) vdp/x1

6-24

Creating Transient Experiment Objects

Modifying Properties
The objects referred in InputData, OutputData, and InitialStates
properties can be modified or removed as necessary.

Using Class Methods
The description of one important method is given below:

update — Updates the object after the Simulink model has been modified.
The object listed in the InputData, OutputData, and InitialStates
properties are updated in turn.

6-25

6 Estimating from the Command Line

Creating Parameter Objects
The @Parameter object refers to the parameters of the Simulink model marked
for estimation. Some of the Simulink model parameters are to be estimated
and storage is required for the initial values, current values, ranges, etc. One
@Parameter object corresponds to each parameter in the Simulink model to be
potentially estimated. These objects represent estimation parameters of any
type such as scalars, vectors, and multidimensional arrays.

Constructor
The syntax to create a parameter object is

h = ParameterEstimator.Parameter('Name');
h = ParameterEstimator.Parameter('Name', Value);
h = ParameterEstimator.Parameter('Name', Value, Minimum,

Maximum);

In the first case, Name is a workspace variable. In the other cases, Name does
not need to exist in the workspace at the time of object creation. However, it is
required at estimation time.

Properties of Parameter Objects
Descriptions of some important properties are given in the table below.

Parameter Object Properties

Property Description

Name Parameter name. The parameter can be a
multidimensional array of any size.

Dimensions Dimensions of the value of the parameter. This is the
defining property for the size of other properties.

Value The current or estimated value of the parameter. This
is the defining property for size checking and scalar
expansions.

6-26

Creating Parameter Objects

Parameter Object Properties (Continued)

Property Description

Estimated A Boolean array of the same size as that of Value.
Depending on the value of the elements of the Estimated
property, the behavior of the corresponding elements of
Value is as follows:

• The elements of Value is estimated if the corresponding
elements in Estimate are set to true. The result is
stored in the Value property.

• The elements of Value are not estimated if the
corresponding elements in Estimated are set to
false. However, these elements are used to reset
the corresponding workspace parameter during
estimations.

This property is set to false by default, meaning that
the parameter value is not estimated.

InitialGuess Separate properties are required to hold the initial
and current values of the parameters. So, when the
InitialGuess property is initialized with a value, both it
and the Value property are assigned the same value.
Depending on the value of the elements of the Estimated
property, the behavior of the corresponding elements of
InitialGuess is as follows:

• If any element in Estimated is set to true, then the
corresponding element of InitialGuess is used to
initialize the workspace parameter during estimations.

• If any element in Estimated is set to false, then the
corresponding element of InitialGuess is not used
in any way.

6-27

6 Estimating from the Command Line

Parameter Object Properties (Continued)

Property Description

Minimum,
Maximum

Parameter range.

TypicalValue The typical values of the parameters. This property is
used in estimations for scaling purposes. The default
value is 1.

Example: F14 Model
To create a parameter object for the parameter Ta in the f14 model, use

par1 = ParameterEstimator.Parameter('Ta')
(1) Parameter data for 'Ta':
Parameter value : 0.05
Initial value : 0.05
Estimated : false
Referenced by the blocks:
f14/Actuator Model

Example: Gain Matrix
To create a parameter object for a matrix parameter K of size 4-by-1, use

par1 = ParameterEstimator.Parameter('K', [1 2 3 4]')
(1) Parameter data for 'K':
Parameter value : [1;2;3;4]
Initial value : [1;2;3;4]
Estimated elements : [false;false;false;false]
Referenced by the blocks:

Modifying Properties
After a parameter object is created, you can modify its properties using this
syntax:

par1.Estimated = true; % Estimate this parameter

6-28

Creating Parameter Objects

Most of the properties, for example, Estimated and TypicalValue support
scalar expansion with respect to the size of Value.

Using Class Methods
Descriptions of two important methods are given below:

• hiliteBlock — Highlights the referenced blocks associated with
parameter objects in the Simulink diagram.

• update — Updates the parameter object after the Simulink model has
been modified. If the size of the Value property changes, then the other
properties are reset to their default values.

6-29

6 Estimating from the Command Line

Creating State Objects
One @State object corresponds to each Simulink block with states in your
model.

Constructor
The syntax to create a state object is

h = ParameterEstimator.State('block');
h = ParameterEstimator.State('block', Value);
h = ParameterEstimator.State('block', Value, Minimum,

Maximum);

In the first case, the state vector is initialized from the model containing the
block. In the other cases, block does not need to exist in the workspace at
the time of object creation. However, it is required at estimation time.

Properties of State Objects
Descriptions of some important properties of state objects are given in the
table below.

State Object Properties

Property Description

Block Name of the Simulink block whose states are defined
by this object.

Dimensions Scalar value to store the number of states of the relevant
block.

Value Column vector to store the value of the state for the
block specified by this object. The length of this vector
should be consistent with the Dimensions property.

6-30

Creating State Objects

State Object Properties (Continued)

Property Description

Estimated A Boolean array of the same size as that of Value.
Depending on the value of the elements of the Estimated
property, the behavior of the corresponding elements of
Value is as follows:

• The elements of Value are estimated if the
corresponding elements in Estimate are set to true.
The result is stored in the Value property.

• The elements of Value are not estimated if the
corresponding elements in Estimated are set to
false. However, these elements are used to reset the
corresponding states during estimations.

This property is set to false by default, meaning that
the state value is not estimated.

InitialGuess Separate properties are required to hold the initial and
current values of the states. So, when the InitialGuess
property is initialized with a value, both it and the
Value property are assigned the same value.
Depending on the value of the elements of the Estimated
property, the behavior of the corresponding elements of
InitialGuess is as follows:

• If any element in Estimated is set to true, then the
corresponding element of InitialGuess is used to
initialize the state during estimations.

• If any element in Estimated is set to false, then the
corresponding element of InitialGuess is not used
in any way.

Minimum,
Maximum

State vector range.

TypicalValue The typical values of the states. This property is used in
estimations for scaling purposes. The default value is 1.

6-31

6 Estimating from the Command Line

State Object Properties (Continued)

Property Description

Ts Sampling time of discrete blocks. Set to zero for
continuous blocks. This property is read-only and is
currently used for information only.

Domain String to hold the physical domain of the block. Used for
SimMechanics or SimPowerSystems blocks with states.

Example: F14 Model
To create a state object for the f14/Actuator Model block in the f14 model,
use

st1 = ParameterEstimator.State(gcb)

MATLAB returns

(1) State data for f14/Actuator Model block:

The block has 1 continuous state(s).

State value : 0
Initial guess : 0

Estimated : false

Modifying Properties
After a state object is created, you can modify its properties using this syntax:

ic1.Estimated = true; % Estimate this state

Most of the properties, for example, Estimated and TypicalValue, support
scalar expansion with respect to the size of Value.

6-32

Creating State Objects

Using Class Methods
Description of two important methods are given below:

• hiliteBlock — Highlights the referenced blocks associated with state
objects in the Simulink diagram.

• update — Updates the state object after the Simulink model has been
modified. If the size of Value property changes, then the other properties
are reset to their default values.

6-33

6 Estimating from the Command Line

Creating Estimation Objects
The @Estimation object is the coordinator of the model, experiment, and
parameter objects.

Constructor
The syntax to create an estimation object is

h = ParameterEstimator.Estimation('model');
h = ParameterEstimator.Estimation('model', hParam);
h = ParameterEstimator.Estimation('model', hParam, hExps);

Properties of Estimation Objects
Descriptions of some important properties of estimation objects are given in
the table below.

Estimation Object Properties

Property Description

Model Name of the Simulink model with which this estimation
is associated.

Experiments Experiments to be used in estimations. For multiple
experiments, the cost function uses a concatenation of the
output error vectors obtained using each experimental
data set.

Parameters Parameter objects to be used in estimations.

States State objects to be used in estimations. This is a handle
matrix with as many columns as there are experiments,
and as many rows as there are states in Model.
The handle matrix is created automatically in
the constructor. You can reorganize its rows
to specify shared states between experiments,
and set the Estimated flag of desired states.
If state data is provided in an experiment, the state
objects stored in the columns of this matrix are initialized
from the experiments.

6-34

Creating Estimation Objects

Estimation Object Properties (Continued)

Property Description

SimOptions Same as simset structure. This property is initialized to
simget(this.Model).

OptimOptions Same as optimset structure.

EstimInfo This property is used to store estimation-related
information at each iteration of the optimizer, and is
initialized as
this.EstimInfo = struct('Cost', [],...

'Covariance', [],...
'FCount', [],...
'FirstOrd', [],...
'Gradient', [],...
'Iteration', [],...
'Procedure', [],...
'StepSize', [],...
'Values', []);

Example: F14 Model
To create an estimation object for the f14 model to estimate the parameters
Ta and Kf and two states, use

exp1 = ParameterEstimator.TransientExperiment(gcs);
par1 = ParameterEstimator.Parameter('Ta', 'Estimated', true);
par2 = ParameterEstimator.Parameter('Kf', 'Estimated', true);
est1 = ParameterEstimator.Estimation(gcs, [par1, par2], exp1);
est1.States(1,1).Estimated = true;
est1.States(6,1).Estimated = true;
est1

MATLAB returns

Estimated variables for the model 'f14':

Estimated Parameters

6-35

6 Estimating from the Command Line

Using Experiments
(1) f14 experiment

Estimated States for Experiment 'f14 experiment'
(1) f14/Actuator Model
(6) f14/Controller/Proportional plus integral compensator

Modifying Properties
After an estimation object is created, you can modify its properties using
this syntax:

est.OptimOptions.Algorithm = 'fmincon'; % Estimation method
est.OptimOptions.Display = 'iter'; % Show estimation information
...in workspace
est.Parameters(1).Estimated = false; % Do not estimate first
...parameter
est.States(2,3).Estimated = false; % Do not estimate second state
...of third expression

Using Class Methods
Descriptions of some of the important methods are given below:

• compare — Compares an experiment and a simulation.

• simulate — Simulates the model with current parameters and states.

• estimate — Runs an estimation.

• restart — Restarts an estimation after it has finished running.

• update — Updates the estimation object after the Simulink model has
been modified.

6-36

7

Blocks — Alphabetical List

Adaptive Lookup Table (1D Stair-Fit)
Adaptive Lookup Table (2D Stair-Fit)
Adaptive Lookup Table (nD Stair-Fit)

Adaptive Lookup Table (1D Stair-Fit)

Purpose Perform one-dimensional adaptive table lookup

Description
The Adaptive Lookup Table (1D Stair-Fit) block creates a
one-dimensional adaptive lookup table by dynamically updating the
underlying lookup table. The block uses the outputs, ydata, of your
system to do the adaptations.

Each indexing parameter U may take a value within a set of adapting
data points, which are called breakpoints. Two breakpoints in each
dimension define a cell. The set of all breakpoints in one of the
dimensions defines a grid. In the one-dimensional case, each cell has
two breakpoints, and the cell is a line segment.

You can use the Adaptive Lookup Table (1D Stair Fit) block to model
time-varying systems.

Data Type
Support

Doubles only

7-2

Adaptive Lookup Table (1D Stair-Fit)

Dialog
Box

First input (row) breakpoint set
The vector of values containing possible block input values. The
input vector must be monotonically increasing.

Make initial table an input
Selecting this check box forces the Adaptive Lookup Table (1D
Stair-Fit) block to ignore the Table data (initial) parameter.
Instead, a new port appears with Tin next to it. Use this port
to input table data.

Table data (initial)
The initial table output values. This vector must be of size N-1,
where N is the number of breakpoints.

7-3

Adaptive Lookup Table (1D Stair-Fit)

Table numbering data
Number values assigned to cells. This vector must be the same
size as the table data vector, and each value must be unique.

Adaptation method
Choose Sample mean or Sample mean with forgetting. Sample
mean averages all the values received within a cell. Sample mean
with forgetting gives more weight to the new data. How much
weight is determined by the Adaptation gain parameter.

Adaptation gain (0 to 1)
A number between 0 and 1 that regulates the weight given to new
data during the adaptation. A 0 means short memory (last data
becomes the table value), and 1 means long memory (average all
data received in a cell).

Make adapted table an output
Selecting this check box creates an additional output port for the
adapted table.

Add adaptation enable/disable/reset port
Add an input port that enables, disables, or resets the adaptive
lookup table. 0 = disable; 1 = enable; 2 = reset to initial table data.

Add cell lock enable/disable port
A port that provides the means for updating only specified cells
during a simulation run. 0 = unlock; 1 = lock current cell.

Action for out-of-range input
Ignore or Adapt by extrapolating beyond the extreme breakpoints.

7-4

Adaptive Lookup Table (2D Stair-Fit)

Purpose Perform two-dimensional adaptive table lookup

Description
The Adaptive Lookup Table (2D Stair-Fit) block creates a
two-dimensional adaptive lookup table by dynamically updating the
underlying lookup table. The block uses the outputs (ydata) of your
system to do the adaptations.

Each indexing parameter U may take a value within a set of adapting
data points, which are called breakpoints. Two breakpoints in each
dimension define a cell. The set of all breakpoints in one of the
dimensions defines a grid. In the two-dimensional case, each cell has
four breakpoints and is a flat surface.

You can use the Adaptive Lookup Table (2D Stair-Fit) block to model
time-varying systems.

7-5

Adaptive Lookup Table (2D Stair-Fit)

Dialog
Box

First input (row) breakpoint set
The vector of values containing possible block input values for the
first input variable. The first input vector must be monotonically
increasing.

Second input (column) breakpoint set
The vector of values containing possible block input values for
the second input variable. The second input vector must be
monotonically increasing.

Make initial table an input
Selecting this check box forces the Adaptive Lookup Table (2D
Stair-Fit) block to ignore the Table data (initial) parameter.

7-6

Adaptive Lookup Table (2D Stair-Fit)

Instead, a new port appears with Tin next to it. Use this port
to input table data.

Table data (initial)
The initial table output values. This 2-by-2 matrix must be of size
(n-1)-by-(m-1), where n is the number of first input breakpoints
and m is the number of second input breakpoints.

Table numbering data
Number values assigned to cells. This matrix must be the same
size as the table data matrix, and each value must be unique.

Adaptation method
Choose Sample mean or Sample mean with forgetting. Sample
mean averages all the values received within a cell. Sample mean
with forgetting gives more weight to the new data. How much
weight is determined by the Adaptation gain parameter.

Adaptation gain (0 to 1)
A number from 0 to 1 that regulates the weight given to new
data during the adaptation. A 0 means short memory (last data
becomes the table value), and 1 means long memory (average all
data received in a cell).

Make adapted table an output
Selecting this check box creates an additional output port for the
adapted table.

Add adaptation enable/disable/reset port
Add an input port that enables, disables, or resets the adaptive
lookup table.

Add cell lock enable/disable port
A port that provides the means for updating only specified cells
during a simulation run.

Action for out-of-range input
Ignore or Adapt by extrapolating beyond the extreme breakpoints.

7-7

Adaptive Lookup Table (nD Stair-Fit)

Purpose Create adaptive lookup table of arbitrary dimension

Description
The Adaptive Lookup Table (nD Stair-Fit) block creates an adaptive
lookup table of arbitrary dimension by dynamically updating the
underlying lookup table. The block uses the outputs of your system to
do the adaptations.

Each indexing parameter may take a value within a set of adapting data
points, which are called breakpoints. Breakpoints in each dimension
define a cell. The set of all breakpoints in one of the dimensions defines
a grid. In the n-dimensional case, each cell has two n breakpoints and
is an (n-1) hypersurface.

You can use the Adaptive Lookup Table (nD Stair-Fit) block to model
time-varying systems.

7-8

Adaptive Lookup Table (nD Stair-Fit)

Dialog
Box

Number of table dimensions
The number of dimensions for the adaptive lookup table.

Table breakpoints (cell array)
A set of one-dimensional vectors that contains possible block
input values for the input variables. Each input row must be
monotonically increasing, but the rows do not have to be the same
length. For example, if the Number of table dimensions is 3,
you can set the table breakpoints as follows:

{[1 2 3], [5 7], [1 3 5 7]}

7-9

Adaptive Lookup Table (nD Stair-Fit)

Make initial table an input
Selecting this check box forces the Adaptive Lookup Table (nD
Stair-Fit) block to ignore the Table data (initial) parameter.
Instead, a new port appears with Tin next to it. Use this port
to input table data.

Table data (initial)
The initial table output values. This (n-D) array must be of size
(n-1)-by-(n-1) ... -by- (n-1), (D times), where D is the number of
dimensions and n is the number of input breakpoints.

Table numbering data
Number values assigned to cells. This vector must be the same
size as the table data array, and each value must be unique.

Adaptation method
Choose Sample mean or Sample mean with forgetting. Sample
mean averages all the values received within a cell. Sample mean
with forgetting gives more weight to the new data. How much
weight is determined by the Adaptation gain parameter.

Adaptation gain (0 to 1)
A number from 0 to 1 that regulates the weight given to new
data during the adaptation. A 0 means short memory (last data
becomes the table value), and 1 means long memory (average all
data received in a cell).

Make adapted table an output
Selecting this check box creates an additional output port for the
adapted table.

Add adaptation enable/disable/reset port
Add an input port that enables, disables, or resets the adaptive
lookup table.

Add cell lock enable/disable port
A port that provides the means for updating only specified cells
during a simulation run.

Action for out-of-range input
Ignore or Adapt by extrapolating beyond the extreme breakpoints.

7-10

8

Functions — Alphabetical
List

spetool

spetool

Purpose Open Simulink Parameter Estimation GUI

Syntax spetool('modelname')

Description spetool('modelname') opens the Simulink Parameter Estimation GUI
for the Simulink model with the name modelname.

See Also For more information about using the Simulink Parameter Estimation
GUI, see Chapter 1, “Getting Started”.

8-2

Index

IndexA
adaptive lookup tables 5-2
adding data sets 1-18

C
command-line estimation 6-3
Controls and Estimation Tools Manager 1-7

D
data

detrending 3-14
exclusion 3-5
filtering 3-14
preprocessing 3-3

Data Import dialog box 1-10
data sets

adding 1-18
detrending data 3-14
display options for estimation 1-22

E
estimation

display options 1-22
example of command-line estimation 6-5
from the command line 6-3
running 1-26
selecting parameters 1-12
selecting states 1-14
setting up a project 1-18

excluding data 3-5

F
filtering data 3-14

I
importing

initial conditions 1-11
transient data 1-8

initial conditions
example of estimating 2-4
importing 1-11

initial guesses 1-15

L
lookup tables

adaptive 5-2

M
multiple projects and tasks 4-2

O
optimization

setting options for 1-39

P
parameters

selecting for estimation 1-12
specification of 1-20

preprocessing data 3-3
projects

definition of 1-5
saving 4-3

R
running an estimation 1-26

S
saving projects 4-3
selecting views 1-23
setting options

for optimization 1-39

Index-1

Index

for simulation 1-39
upper/lower bounds 1-15

simulation
setting options for 1-39

specifying parameters 1-20
states

selecting for estimation 1-14

T
transient data

importing 1-8

U
upper/lower bounds

setting 1-15

V
views

selecting 1-23

Index-2

	toc
	Getting Started
	What Is Simulink Parameter Estimation?
	What You Need to Get Started
	Prerequisite Software and Optional Software
	Required Knowledge
	Demos

	How Simulink Parameter Estimation Works
	Basic Steps in the Estimation Process
	Structure of an Estimation Project

	Setting Up the Estimation Data
	Importing Transient Data
	Specifying Initial Conditions
	Selecting Parameters for Estimation
	Selecting States for Estimation
	Initial Guesses and Upper/Lower Bounds

	Setting Up an Estimation Project
	Adding Data Sets
	Specifying and Setting Up Parameters
	Opening the Estimation Pane
	Display Options

	Selecting Views for Plotting
	Running the Estimation
	Model Validation
	Example: Validating the Engine Idle Speed Model
	Loading and Importing the Validation Data
	Performing Validation
	Residuals

	Setting Options for Optimization
	Selecting Optimization Methods
	Selecting Optimization Termination Options
	Selecting Additional Optimization Options
	Specifying the Cost Function

	Setting Options for the Simulation
	Selecting Simulation Time
	Selecting Solvers
	Variable-Step Solvers
	Variable-Step Solver Options
	Fixed-Step Solvers

	Estimating Independent Parameters
	Example: Estimating Independent Paramters

	Estimating Initial Conditions
	Why Estimate Initial Conditions?
	Estimating Initial Conditions for Blocks with External Initial C
	Example: Mass-Spring-Damper System
	Model Parameters
	Setting Up the Estimation Project
	Importing Transient Data and Selecting Parameters for Estimatio
	Selecting Parameters and Initial Conditions for Estimation
	Creating the Estimation Task
	Running the Estimation and Viewing Results

	Preprocessing Data
	Why Preprocess Data?
	Data Preprocessing Tool
	Excluding Data
	Selecting Data for Exclusion from the Data Editing Table
	Selecting Data for Exclusion from a Plot of the Data
	Selection Pane

	Selecting Data for Exclusion by a Rule
	Upper and Lower Bounds
	Outliers
	MATLAB Expressions
	Flatlines
	Example of Rule Exclusion

	Detrending and Filtering
	Detrending
	Filtering

	Miscellaneous Data Handling
	Handling Missing Data
	Removing Rows
	Interpolation

	Loading Data and Saving Modified Data Sets

	Managing Multiple Projects
	Multiple Projects and Tasks
	Saving Control and Estimation Tools Manager Projects
	Opening Control and Estimation Tools Manager Projects

	Adaptive Lookup Tables
	What Are Lookup Tables?
	How Adaptive Lookup Tables Work
	Implementation of Adaptive Lookup Tables
	Adaptive Lookup Table Library
	Using Adaptive Lookup Tables in Simulink Models
	Real-Time Lookup Tables
	Setting Adaptive Lookup Table Parameters

	Example: n-D Adaptive Lookup Table
	Running the Example

	Estimating from the Command Line
	Introduction
	Example: Estimating Parameters and Initial Conditions of the F14
	Baseline Simulation
	Creating a Transient Experiment Object
	Assigning Experimental Data to Inputs and Outputs of the Model
	Creating Parameter Objects for Estimation
	Creating an Estimation Object and Running the Estimation

	Creating and Customizing Estimation Projects
	Creating Transient Data Objects
	Properties of Transient Data Objects
	Modifying Properties of Transient Data Objects
	Example: Assigning Input Port Data

	Using Class Methods

	Creating State Data Objects
	Properties of the State Data Object
	Example: Initial Condition Data
	Modifying Properties
	Using Class Methods

	Creating Transient Experiment Objects
	Properties of Transient Experiment Objects
	Example: Creating an F14 Experiment
	Example: Creating a Van der Pol Experiment from User Objects
	Modifying Properties
	Using Class Methods

	Creating Parameter Objects
	Constructor
	Properties of Parameter Objects
	Example: F14 Model
	Example: Gain Matrix
	Modifying Properties
	Using Class Methods

	Creating State Objects
	Constructor
	Properties of State Objects
	Example: F14 Model
	Modifying Properties
	Using Class Methods

	Creating Estimation Objects
	Constructor
	Properties of Estimation Objects
	Example: F14 Model
	Modifying Properties
	Using Class Methods

	Blocks — Alphabetical List
	Functions — Alphabetical List
	Index

	tables
	Transient Data Object Properties
	State Data Object Properties
	Transient Experiment Object Properties
	Parameter Object Properties
	State Object Properties
	Estimation Object Properties

